Please wait while we enable your Account


Contacting Amazon Web Services
Deploying Cloud Servers, Storage, Transcoding & Database Servers
Deploying Global CDN
Deploying Firewall & Enabling Security Measures
Deploying the CMS & Admin Module
Deploying Website, Mobile & TV Apps framework
Creating your FTP account
Finishing up all the modules
Preparing for launch

How to Build a Movie Recommendation Engine?

Ankit Jena Published on : 25 April 2022


The audience loves to watch movies irrespective of their age, gender, race, color, or location. The movie is an amazing medium that keeps people connected in a way. The most interesting fact is how unique our choices and combinations are in terms of movie preferences. Some individuals prefer to watch thriller movies while others like to watch romance or sci-fi movies. It would be unfair to generalize a movie and say everybody likes it. So, here comes the movie recommendation engine into the play and analyzes all the behavioral patterns of audiences and refines as well as suggests preferred movies to them. So, waiting further, let’s jump into the basics of a movie recommender system and the steps to build a movie recommendation engine.


What is a Movie Recommendation Engine?

A movie recommendation engine is a tool that filters and suggests movies to audiences according to their preferences. The main objective of a recommender system is to predict the user’s preferred content. It analyzes user data and recommends personalized movies in real-time. It includes a class of techniques as well as algorithms that can suggest relevant items to the end-user.


movie recommendation engine


Why do we need a movie recommendation engine?

We are presently in the “era of abundance”. There are thousands of movies to choose from and a movie recommendation engine is the only tool that can save users a lot of time and help them find something they like. From a business point of view, the more relevant movies a user/subscriber finds on the platform, the higher will be the engagement. Various sources have articulated that about 35% to 40% of revenue comes from recommendations to the users.


Building a Movie Recommendation Engine

First of all, we will import libraries that we will be using in our movie recommendation system, and also, we will import the data set by adding the path of the CSV files. After adding the data, we must look at the file using the data frame.head() command to print the first 5 rows of the data set. The movie data set has:

  • MovieId – once the recommendation is done, we get a list of all similar movield and get the title for each movie from this dataset.
  • Genres – Once the analyzation is done, it will classify movies into different genres


 The rating data set includes:

  • UserId – User Id is unique for each user
  • MovieId – using this feature we take the title of the movie from the movie data set
  • Rating – it includes the ratings by each user to all movies and using this we can predict the top 10 similar movies



To find the likeness between movies for the content-based method, we can use a cosine similarity function and for the collaborative method, we can use the matrix factorization technique.


The three steps involved in the implementation of a recommendation engine are:

  • Building a matrix factorization-based model
  • Creating hand-crafted features
  • Implement the final model


Step 1 – Matrix Factorization-based algorithm

It is a class of collaborative filtering algorithms used in a recommendation engine. It became popular during the Netflix prize challenge due to how effective it was. It works by decomposing the user-movie interaction matrix into the product of two lower dimensionality rectangular matrices.


Step 2 – Creating Handcrafted Features

The next step is to convert the data frame format into a user-movie interaction matrix. Matrices used in this kind of problem are usually sparse because there is a high possibility user may only rate a few movies.

Advantages of sparse matrix format of data, also called CSR format are:

  • Efficient arithmetic operations
  • Efficient row slicing
  • Fast matrix-vector products

Spicy.sparse.csr_matrix is a utility function that effectively converts the data frame into a sparse matrix and ‘train_sparse_matrix’ is the sparse matrix representation of the train_data data frame.


Step 3 – Creating a final model for our movie recommendation engine

To create the final model, you can use XGBoost as an optimized distributed gradient boosting library.

XG Boost is defined as an optimized distributed gradient boosting library designed to be highly efficient, flexible as well as portable. Under the gradient boosting library, a machine learning algorithm is implemented. It offers parallel tree boosting that solves several data science problems in a fast and precise method.


Performance metrics 

There are two major methods to evaluate a recommendation engine’s performance:

  • Root Mean Squared Error
  •  Mean Absolute Percentage Error

Root mean squared error method measures squared loss while Mean absolute percentage error measures absolute loss. Lower values denote lower error rates and thus enhanced performance. Both of them are helpful and good because they allow for lower error rates and enhanced performance.



In this blog, we learned what a movie recommender system is, how important a recommendation engine is and how to build and implement a recommender system. However, we at Muvi have a pre-build recommender system – Alie which allows you to start working on your projects by just taking the subscription. You don’t need a team of coders to develop a recommender system for your business anymore! Alie integrates with your website and applications to provide real-time recommendations. Its unique machine learning algorithm is designed to analyze user data and recommend personalized content in real-time with impeccable accuracy. Start a 14-days free trial to explore how Alie can help your movie streaming platform boost user engagement without a team of backend developers.


movie recommendation engine 

Written by: Ankit Jena

Ankit is Content Writer for Muvi’s Marketing unit. He is a passionate writer with 5+ Years of Experience in Content Creation And Development. In his past time, he likes to dance, play football and google various things to quench his thirst for knowledge.

Add your comment

Leave a Reply

Your email address will not be published.

Try Alie free for 14 days

No Credit Card Required

Upcoming Webinar
June 27

9:00AM PST

Leveraging Analytics for Success in the Streaming Industry

A streaming platform’s success is crucially dependent on data. In today’s competitive streaming landscape, data is king. This webinar will unlock the secrets of using analytics to gain…...

Event Language: English
30 Minutes